82=v^2+7

Simple and best practice solution for 82=v^2+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 82=v^2+7 equation:



82=v^2+7
We move all terms to the left:
82-(v^2+7)=0
We get rid of parentheses
-v^2-7+82=0
We add all the numbers together, and all the variables
-1v^2+75=0
a = -1; b = 0; c = +75;
Δ = b2-4ac
Δ = 02-4·(-1)·75
Δ = 300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{300}=\sqrt{100*3}=\sqrt{100}*\sqrt{3}=10\sqrt{3}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{3}}{2*-1}=\frac{0-10\sqrt{3}}{-2} =-\frac{10\sqrt{3}}{-2} =-\frac{5\sqrt{3}}{-1} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{3}}{2*-1}=\frac{0+10\sqrt{3}}{-2} =\frac{10\sqrt{3}}{-2} =\frac{5\sqrt{3}}{-1} $

See similar equations:

| 10−4r=-3r | | 6s=-9+5s | | -6j=10-j | | 2{a-6-8}=54 | | 3(2x-5)+6(x-3)=-3(4-5x)+5x-11 | | -8v=-v+7 | | 4(x)=2x-5 | | 2(u-2)-8=-6(-2u+3)-6u | | 5x3x+2-9=7x-3x+9 | | 4+-(3x+21)=6 | | 2+6x+x=-54 | | 10-5x=3(x-1)-3(x-2) | | 11/71=x | | 10-5x=3(x-1)-3 | | 60x+140=1450 | | 4/5x+4/5=2x | | D=-16t^2+435 | | 92y-4.3=50.9 | | 2x+8+2x=8+4x | | X-x+7+3x=11-22+12x | | -3.6+1.2x=-1.8 | | x^2/4=17 | | 0.05z+0.2=0,15z-10.5 | | √(12x+9)=√(12x-7) | | √12x+9=√12x-7 | | 8n-50=850 | | 4y-6=7+2y | | 7x-(3x+5)-8=1/2(8x+20)-7x+5x | | 2x+3x+32=x+7x-8 | | -5r-3=12 | | (8x-9)=180 | | 3(8+6b)=2b-8 |

Equations solver categories